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Introduction

Objective: developing a LAMMPS package for spin–lattice simulations.

Enable study of:

Magnetostriction,
Spin–lattice relaxation,
Spin dynamics,
Topological spin
structures,
Spin liquids, ...

Simulations of bismuth oxide and fcc colbalt.
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EOMs for the spin dynamics
From the DFT formalism, Antropov et al. derived equations for
the dynamics ot atomic spins [2]:

dsi
dt

=
1

1 + λ2
((ωi + ηi)× si + λ si × (ωi × si))

Magnetic interactions:

ωi = −
1

ℏ
∂HMag

∂si

Spin Hamiltonian:

HMag =
N∑

i,j,i̸=j
Jij (rij) si · sj

+ gµBµ0

N∑
i=0

si · Hext

Connection to a random bath:

⟨ηi⟩ = 0 and
⟨ηα

i (t)ηβ
j (t

′)⟩ = 2Dδijδαβδ(t − t′)

Fluctuation–dissipation
relation:

D =
2πλkBT

ℏ

[2] Antropov, V. P. et al. (1996). Phys. Rev. B, 54(2), 1019.
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EOMs for spin–lattice dynamics

Spin–lattice Hamiltonian [3]:

Hsl =
N∑

i=1

mi|vi|2

2
+

N∑
i,j

V (rij) +
N∑

i,j,i̸=j
Jij (rij) si · sj + gµBµ0

N∑
i=0

si · Hext

The associated spin–lattice equations of motion are given by [3]:
∂ri
∂t

= vi

∂vi
∂t

= Fi (rij, si,j) =
N∑

j,i̸=j

[
−

dV (rij)

dr
+

dJ (rij)

dr
si · sj

]
∂si
∂t

= ωi × si

[3] Beaujouan, D., et al.. (2012). Phys. Rev. B, 86(17), 174409.
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Numerical integration
Advance operators are not commuting, a Suzuki–Trotter
decomposition has to be used [4]:

ST decomposition:

v← v + Lv.∆t/2

r← r + Lr.∆t/2

s← s + Ls.∆t

r← r + Lr.∆t/2

v← v + Lv.∆t/2

s0 ← s0 + Ls0 .∆t/2

sN−1 ← sN−1 + LsN−1 .∆t/2

sN ← sN + LsN .∆t

sN−1 ← sN−1 + LsN−1 .∆t/2

s0 ← s0 + Ls0 .∆t/2

Numerical results:

Sim. param.: λ = 0, Hext = 10T along

ez, JCo

[4] Omelyan, I. P. et al. (2001). Phys. Rev. Lett., 86(5), 898.
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Parallel implementation

A sectoring method, respecting the symplectic properties of the
spin–lattice algorithms, was implemented [5]:

1

3

2

4

1

3

2

4

1

3

2

4

1

3

2

4

Sectoring operations for a two dimen-
sional system with four processors.

A

C

B

D

Communication between four sectors
for periodic boundary conditions.

[5] Amar, J. G. et al. (2005). Phys. Rev. B, 71(12), 125432.
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Results
Weak and strong scaling results for the sectoring algorithm:

Simulation conditions: λ = 0, JCo > 0,

∆ t = 10−4 ps, Hext = 10T along ez

Simulation conditions: λ = 0, JCo > 0,

∆ t = 10−4 ps, Hext = 10T along ez

The 50 % efficiency of the algorithm is reached between 250 and
300 atoms per process.
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Conclusions

Summary:
A package allowing spin lattice simulations has been developed,
Mathematically rigorous integration algorithms were implemented
(magnetization and energy preservation),
A sectoring algorithm was implemented and tested.

Future work:
Take the long range dipolar interaction into account:

HMag =
N∑

i,j,i̸=j
Jij (rij) si · sj −

µ0µ2
b

4π

N∑
i,j,i̸=j

gigj
r3ij

(
(si · eij)(sj · eij)−

1

3
(si · si)

)
Find experiments to compare with.
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Appendix 1: Magnetic interactions

Spin Hamiltonian:

HMag = HEx +HZee +HAn +HDM +HME +HDip

Magnetic anisotropy:

HAn = Ka

N∑
i=0

(si · na)
2

Magneto-electric
interaction:

HME =
N∑

i,j,i ̸=j
(E × rij) · si × sj

Zeeman interaction:

HZe = gµBµ0

N∑
i=0

si · Hext

Dzyaloshinskii-moriya:

HDM =
N∑

i,j,i̸=j
Dij · si × sj

9/5/17 9



Appendix 2: Poisson bracket for spin–lattice systems

Considering f (t, ri,pi, si) and g (t, ri,pi, si), one has:

{f, g} =
N∑

i=1

[
∂f
∂ri

.
∂g
∂pi
− ∂f

∂pi
.
∂g
∂ri

+
si
ℏ
.

(
∂f
∂si
× ∂g

∂si

)]
[] Yang, K. H. et al. (1980). Phys. Rev. A, 22(5), 1814.
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Appendix 3: Parametrization of the exchange interaction

Bethe–Slater model for the parametrization:

J(ij) = 4α
( rij
δ

)2
(
1− γ

( rij
δ

)2
)

exp
(
−
( rij
δ

)2
)
Θ(rc − rij)

(1)
with:

α an energy in eV,
δ a characteristic distance in Å,
γ an adimensional coefficient,
rc a cutoff distance.
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